Speaker
Description
The ALICE Time Of Flight (TOF) detector is based on 1638 Multigap strip RPCs, for a total active area of 140 m$^2$ and more than 150000 readout channels. After ten years of operations the detector performance remains excellent, with no observable degradation in stability of operation nor in efficiency of particle detection. A new calibration has brought to a significant improvement in the time resolution - down to 60 ps - very close to the value observed in beam test measurements. A new algorithm allowed a better event collision time determination, while more powerful methods to separate particles have been developed for the different LHC colliding systems (pp, p-Pb and Pb-Pb). These improvements allowed an extension of the particle identification(PID) capacities of TOF in the intermediate momentum range, achieving a separation better than 3$\sigma$, up to a particle momentum of p $\sim$ 2.5 GeV/c and p $\sim$ 4 GeV/c for $\pi$/K and K/p, respectively. Few examples of PID application to physics analysis will be described. Finally, the TOF upgrade program will be briefly discussed: this will allow the TOF detector to become a detector with a continuous readout during the next LHC Run3 data taking period.