Speaker
Description
Particle identification is a central requirement of the experiments at the future Electron-Ion Collider (EIC) recommended by the U.S. Nuclear Science Advisory Committee Long Range Plan. In particular, hadron identification at high momenta by RICH techniques requires the use of low density gaseous radiators, where the challenge is the limited length of the radiator region available at a collider experiment. A concrete option to increase the number of detectable photons is by selecting a photon wavelength range in the far UV domain, around 120 nm, where the Cherenkov photon rate is higher. Ideal sensors in this domain are gaseous PDs with CsI photocathode, where the status of the art is represented by the MicroPattern Gaseous Detectors (MPGD) with sensitivity in the UV range in operation at COMPASS RICH. Detector optimization is required for the application at EIC.
Here we report about a dedicated prototype where the sensor pad-size has been reduced to preserve the angular resolution in a more compressed architecture. A new DAQ system based on the SRS read-out electronics that has been developed for the laboratory and test beam studies of the prototype.