Kindly note that the Indico instance has been moved to the new address, indico.mosphys.ru. All registrations made for events listed at the Indico home page, remain active and valid.

July 29, 2018 to August 4, 2018
Russian Academy of Sciences
Europe/Moscow timezone

Calibration of the Belle II Aerogel Ring Imaging detector

Aug 1, 2018, 10:15 AM
25m
Blue Hall (Russian Academy of Sciences)

Blue Hall

Russian Academy of Sciences

Leninsky Prospekt, 32а Moscow 119071 Russian Federation
oral presentation [20+5 min] Pattern recognition and data analysis Pattern recognition and data analysis

Speaker

Rok Pestotnik (Jožef Stefan Institute)

Description

To efficiently separate hadrons in the forward end-cap of the Belle II spectrometer, an aerogel proximity focusing Ring Imaging Detector is installed in the high magnetic field between the central drift chamber and electromagnetic calorimeter. Cherenkov photons, emitted in the double layer aerogel radiator are expanded in the 16 cm empty space and detected on the photon detector comprising by 420 Hybrid avalanche photo diodes. Photons at the outer edge of the detector, which would not be detected, are reflected back towards the photo sensors. The readout electronics working in a threshold mode will record hit patterns created during beam collisions. A particle identification algorithm based on the two dimensional extended maximum likelihood technique will be used to assign probabilities for different particle hypotheses of tracks traversing the aerogel RICH detector. The likelihood function combines the probabilities for different photon emission and path hypotheses
To tune and to determine detector performance, we will use particles, unambiguously identified by other subsystems or only by tracking system.
In the presentation, the particle identification algorithm will be presented together with the expected simulated performance. We will present the strategy to determine a kaon identification efficiency by using $D^{\pm ∗}$ decays. Data from first beam collisions will also be shown.

Primary author

Rok Pestotnik (Jožef Stefan Institute)

Presentation materials