Conveners
Novel Cherenkov imaging techniques for future experiments
- Jochen Schwiening (GSI)
- Jacques Seguinot
Novel Cherenkov imaging techniques for future experiments
- Jochen Schwiening (GSI)
- Jacques Seguinot
The LHCb Ring-Imaging Cherenkov (RICH) detector system has been operated with very high availability in the LHCb experiment since 2009, performing charged hadron identification in a wide momentum range with high efficiency and providing crucial information for most physics analyses.
The LHCb experiment will undergo a major upgrade during the second LHC long shutdown (2019-2020), improving the...
The HADES RICH detector at GSI/FAIR is currently being upgraded using Hamamatsu H12700 photomultipliers for Cherenkov photon detection. The same sensors will be also used by the CBM RICH detector, which is being built at FAIR-SIS100. A total of 1100 already delivered MAPMTs have been individually measured with respect to sensitivity, gain, dark current, and afterpulsing.
The test data prove...
In the proposed Electron-Ion Collider (EIC) experiments, particle identification (PID) of the final state hadrons in the semi-inclusive deep inelastic scattering allows the measurement of flavor-dependent gluon and quark distributions inside nucleons and nuclei. The EIC PID consortium (eRD14 Collaboration) has been formed for identifying and developing PID detectors using ring imaging...
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) in Darmstadt (Germany) will address fundamental questions of hadron physics in high-energy antiproton collisions with fixed hydrogen and nuclear targets.
The PANDA Forward RICH (FRICH) is intended for identification of charged particles with forward polar angles below 5°–10° and...
The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR), under construction near GSI, Darmstadt, Germany, will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID...
This year we start assembling the DIRC detector to upgrade the particle identification capabilities in the forward region of the GlueX detector in Hall D at Jefferson Lab. The main components of the GlueX DIRC are the four radiator boxes (reused from the decommissioned BaBar DIRC) and two photon cameras, which were designed based on the prototype for the SuperB FDIRC. The first radiator box...
The excellent PID system is needed for successful execution of the broad experimental program at future Super C-$\tau$ Factory in Novosibirsk. The main requirements for PID system are following: good $\pi/K$-separation in whole operational momentum range and good $\mu/\pi$-separation in momentum range from 0.4 up to 1.2 GeV/c. The RICH detector based on focusing aerogel (FARICH) suits for all...
In a Cherenkov detector, the refractive index of the conventional radiator sets a fundamental limit to the momentum coverage and sensitivity, for particle identification. For example for particles above 10 GeV/c, RICH detectors use large gas radiators. There is a dearth of materials to cover the full 1-10 GeV/c range. A new mechanism based on constructive interference of resonance transition...